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1-LIGHT WAVES AND PHYSICAL OPTICS 

In our study of ray optics and image formation, we represented image 

points as "geometrical points,” without physical extent. That, of course, 

followed logically since light rays were used to locate the image points 

and light rays are lines that intersect clearly at geometrical points. But in 

reality, if you were to examine such image points with a microscope, you 

would see structure in the “point,” a structure explained only when you 

invoke the true wave nature of light. In effect, then, we are saying that, 

with large objects such as prisms, mirrors, and lenses—large in the sense 

that their dimensions are millions of times that of the wavelength of 

light— interference and diffraction effects are still present in the imaging 

process, but they occur on so small a scale as to be hardly observable to 

the naked eye. To a good approximation, then, with “large” objects we 

are able to describe light imaging quite satisfactorily with geometrical 

(ray) optics and obtain fairly accurate results. But when light waves pass 

around small objects, such as a 100-μ-diameter human hair, or through 

small openings, such as a 50-μ pinhole, ray optics cannot account for the 

light patterns produced on a screen beyond these objects. Only wave 

optics leads to the correct interpretation of such patterns. 

 

And so now we turn to a study of the wave nature of light and to the 

fascinating phenomena of interference, diffraction, and polarization—and 

of such devices as gratings and thin-film coatings. We shall see that 

interference occurs when two or more light waves pass through the same 

region and add to or subtract from each other. Diffraction occurs when 

light waves pass through small openings or around small obstacles and 

spread, and polarization occurs due to the transverse nature of the electric 



 

 

field vibration in a propagating electromagnetic wave. Before we look at 

these phenomena, let’s review briefly the nature of waves, wave fronts, 

and wave motion. 

 

A-Physics of waves and wave motion 

Wave optics treats light as a series of propagating electric and magnetic 

field oscillations. While we cannot see these extremely rapid oscillations, 

their wave behavior is similar to that of water   Waves. Thus, we find it 

useful to picture waves and wave motion in terms of simple water waves, 

such as those created by a bobbing cork on an otherwise quiet pond. See 

Figure 1-1a. 

 

FIGURE (1-1) 

The bobbing cork generates a series of surface disturbances that travel 

outward from the cork. Figure 1-1b shows the same disturbances 

traveling away from point A (the cork) as a series of successive wave 

fronts labeled crests and troughs. Recall that a wave front is a locus of 

points   along which all phases and displacements are identical. The solid 

circles in Figure 1-1b depict the outward-moving wave crests; the dashed 

circles represent wave troughs. Adjacent crests are always a wavelength 

apart, as are the adjacent troughs. 

 

If we were able to look along the surface of the pond, we would see a 

sinusoid-like profile of the traveling wave such as that shown in Figure 1-



 

 

2a. The profile is a snapshot of the water displacement at a certain instant 

of time along a direction such as AB, labeled back in Figure 1-1b. The 

water surface rises to a maximum displacement (+y0) and falls to a 

minimum displacement (−y0) along the profile. As time varies, the 

“snapshot” profile in Figure 1-2a moves to the right with its characteristic 

wave speed. The radial distance outward from the cork at position A, 

shown in Figure 4-1b, is denoted by the variable r in Figure 1-2a. 

 

FIGURE (1-2) 

Now suppose that—instead of looking along the surface of the pond—we 

look at the moving wave at one definite position on the pond, such as at 

point Q in Figure 1-2a. What happens to the wave displacement at this 

fixed position as the wave disturbances move away from the cork? We 

know from experience that the surface of the pond at Q rises and falls, 

repeatedly—as long as the wave disturbances move past this position. 

This wave displacement as a function of time—at a fixed position—is 

shown in Figure 1-2b. Note again that the shape is sinusoid-like. Since 

we’re concentrating on one position in Figure 1-2b, we cannot “see” the 

whole wave. All 



 

 

we see is the up and down motion of point Q. The time between 

successive maxima or successive minima is defined as the period (τ) of 

the wave. The number of times point Q goes from max to min to max per 

second is called the frequency (f ) of the wave. The period τ and the   

requency f are related by the simple relationship f = 1/τ, as presented in 

Module 1-1, Nature and Properties of Light. 

 

B. The mathematics of sinusoidal waveforms 

The two aspects of wave motion depicted in Figures 4-2a and 4-2b—one 

at a fixed time, the other at a fixed position—are addressed in a 

mathematical equation that describes a sinusoidally  varying traveling 

wave. Refer to Equation 1-1, the waveform shown in Figure 1-2b. 

 

 

 

The factor in brackets in Equation 1-1 defines the phase angle φ of the wave at 

position r and  time t. Thus, negative wave displacement 
 



 

 

 

 Such wave fronts are troughs. And so it goes for all other wavefronts 

between the crests and troughs. For example, points P, Q, and R in Figure 

1-2a, all with the same wave displacement, represent wave fronts a 

wavelength apart with phase angles of values differing by 2π. Example 1 

provides an application of Equations 1-1 and 1-2 to circular water waves 

on a quiet pond. 

 

Example 1 

Circular water waves such as those shown in Figures 4-1a and 4-1b move 

outward from a bobbing cork at A. The cork bobs up and down and back 

again—a complete cycle—once per second, and generates waves that 

measure 10 cm from crest to crest. Some time after the wave motion has 

been established, we begin to time the motion with a stopwatch. At a 

certain time t = 10 s on the watch, we notice that the wave profile has the 

shape shown below. Figure (1-3) 

 



 

 

 

 

2. INTERACTION OF LIGHT WAVES 

A. The principle of superposition 

An understanding of light wave interference begins with an answer to the 

question, “What happens at a certain position in space when two light 

waves pass through that position at the same time? To answer this 



 

 

question, we invoke the principle of superposition, which states: When 

two or more waves move simultaneously through a region of space, each 

wave proceeds independently as if the other were not present. The 

resulting wave “displacement” at any point and time is the vector sum of 

the “displacements” of the individual waves. This principle holds for 

water waves, mechanical waves on strings and on springs (the Slinky!), 

and for sound waves in gases, liquids and solids. Most important for us, it 

holds for all electromagnetic waves in free space. So, if we have two light 

waves passing through some common point P, where Wave 1 alone 

causes a “displacement” Y1 and Wave 2 alone a displacement Y2, the 

principle of superposition states that the resultant displacement YRES is 

given by a vector sum of the two displacements. If both displacements are 

along the same direction—as they will be for most applications in this 

module—we can add the two displacements algebraically, as in Equation 

1-3. 

YRES = Y1 + Y2 (4-3) 

 

An application of Equation 1-3 is shown in Figure 1-4, where Wave 1 and 

Wave 2 are moving along the x-direction to the right. Wave 2 is drawn 

with ¾ the amplitude and ½ the wavelength of Wave 1. The resultant 

wave, obtained by applying Equation 1-3 at each point along the x-

direction, is shown by the solid waveform, YRES. 

 

 FIGURE ( 1-4) 



 

 

In Figure 1-5, we show the interference of two sinusoidal waves of the 

same amplitude and same frequency, traveling in the same direction. The 

two waves are represented by the light solid and broken curves, the 

resultant by the solid heavy curve. In Figure 1-5a the two waves are 

exactly in phase, with their maximum and minimum points matching 

perfectly. Applying the principle of superposition to the two waves, the 

resultant wave is seen to have the same amplitude and frequency but 

twice the amplitude 2A of either initial wave. This is an example of 

constructive interference. In Figure 4-5b the two curves are exactly out of 

phase, with the 

crest of one falling on the trough of the other, and so on. Since one wave 

effectively cancels the effect of the other at each point, the resultant wave 

has zero displacement everywhere, as indicated by the solid black line. 

This is an example of destructive interference. In Figure 1-5c, the two 

waves are neither completely in phase nor completely out of phase. The 

resultant wave then has an amplitude somewhere between A and 2A, as 

shown. 

 



 

 

 

FIGURE (1-5) 

B. Huygens’ wavelets 

Long before people understood the electromagnetic character of light, 

Christian Huygens—a 17th-century scientist—came up with a technique 

for propagating waves from one position to another, determining, in 

effect, the shapes of the developing wave fronts. This technique is basic 

to a quantitative study of interference and diffraction, so we cover it here 

briefly. Huygens claimed that: 

Every point on a known wave front in a given medium can be treated as a 

point source of secondary wavelets (spherical waves “bubbling” out of 

the point, so to speak) which spread out in all directions with a wave 

speed characteristic of that medium. The developing wave front at any 

subsequent time is the envelope of these advancing spherical wavelets. 

 

Figure 1-6 shows how Huygens’ principle is used to demonstrate the 

propagation of successive (a) plane wave fronts and (b) spherical wave 



 

 

fronts. Huygens’ technique involves the use of a series of points P1… P8, 

for example, on a given wave front defined at a time t = 0. From these 

points—as many as one wishes, actually—spherical wavelets are 

assumed to emerge, as shown in Figures 1-6a and 1-6b. Radiating 

outward from each of the P-points, with a speed v, the  series of 

secondary wavelets of radius r = vt defines a new wave front at some 

time t later. In Figure 1-6a the new wave front is drawn as an envelope 

tangent to the secondary wavelets at a distance r = vt from the initial 

plane wave front. It is, of course, another plane wave front. In Figure 1-

6b, the new wave front at time t is drawn as an envelope tangent to the 

secondary wavelets at a distance r = vt from the initial spherical wave 

front. It is an advancing spherical wave front 

 

Figure 1-6 Huygens’ principle applied to the propagation of plane and 

spherical wave fronts 

 

While there seems to be no physical basis for the existence of Huygens’ 

“secondary” point sources, Huygens’ technique has enjoyed extensive 

use, since it does predict accurately—with waves, not rays—both the law 

of reflection and Snell’s law of refraction. In addition, Huygens’ principle 

forms the basis for calculating, for example, the diffraction pattern 

formed with multiple slits. We shall soon make use of Huygens’ 



 

 

secondary sources when we set up the problem for diffraction from a 

single slit. 

 

3. INTERFERENCE 

Today we produce interference effects with little difficulty. In the days of 

Sir Isaac Newton and Christian Huygens, however, light interference was 

not easily demonstrated. There were several reasons for this. One was 

based on the extremely short wavelength of visible light—around 20 

millionths of an inch—and the obvious difficulty associated with seeing 

or detecting interference patterns formed by overlapping waves of so 

short a wavelength, and so rapid a vibration—around a million billion 

cycles per second! Another reason was based on the difficulty—before 

the laser came along—of creating coherent waves, that is, waves with a 

phase relationship with each other that remained fixed during the time 

when interference was observed. 

 

It turns out that we can develop phase coherence with nonlaser light 

sources to demonstrate interference, but we must work at it. We must 

“prepare” light from readily available incoherent light sources—which 

typically emit individual, uncoordinated, short wave trains of fixed phase  

of no longer than 10−8 seconds—so that the light from such sources 

remains coherent over periods of time long enough to overlap and 

produce visible interference patterns. There are generally two ways to do 

this. 

• Develop several coherent virtual sources from a single incoherent 

“point” source with the help of mirrors. Allow light from the two virtual 

sources to overlap and interfere. (This method is used, for example, in the 

Loyd’s mirror experiment.) 



 

 

• Take monochromatic light from a single “point” source and pass it 

through two  small openings or slits. Allow light from the two slits to 

overlap on a screen and interfere.We shall use the second of these two 

methods to demonstrate Thomas Young’s famous doubleslit experiment, 

worked out for the first time at the very beginning of the 19th century. 

But first, let’s consider the basics of interference from two point sources  

A. Constructive and destructive interference 

Figure 1-7 shows two “point” sources of light, S and S′, whose radiating 

waves maintain a fixed phase relationship with each other as they travel 

outward. The emerging waves are in effect spherical, but we show them 

as circular in the two-dimensional drawing. The solid circles represent 

crests, the dashed circles, troughs. 

Earlier, in Figure 1-5a, we saw the effect of constructive interference for 

waves perfectly in phase and, in Figure 1-5b, the effect of destructive 

interference for waves perfectly out of phase. In Figure 1-7, along 

directions OP, OP2, and OP2′ (emphasized by solid dots) crests from S 

and S′ meet (as do the troughs), thereby creating a condition of 

constructive interference. As a result, light striking the screen at points P, 

P2, and P2′ is at a maximum intensity and a bright spot appears. By 

contrast, along directions OP1 and OP1′ (emphasized by open circles) 

crests and troughs meet each other, creating a condition of destructive 

interference. So at points P1 and P1′ on the screen, no light appears, 

leaving a dark spot. 



 

 

 

FIGURE (1-7) 

 

The requirement of coherent sources is a stringent requirement if 

interference is to be observed. To see this clearly, suppose for a moment 

that sources S and S′ in Figure 1-7 are, in fact, two corks bobbing up and 

down on a quiet pond. As long as the two corks maintain a fixed 

relationship between their vertical motions, each will produce a series of 

related crests and troughs, and observable interference patterns in the 

overlap region will occur. But if the two corks bob up and down in a 

random, disorganized manner, no series of related, fixed-phase crests and 

troughs will form and no interference patterns of sufficiently long 

duration can develop, and so interference will not be observed. 

 

B. Young’s double-slit interference experiment 



 

 

Figure 1-8a shows the general setup for producing interference with 

coherent light from two slits S1 and S2. The source S0 is a 

monochromatic point source of light whose spherical wave fronts 

(circular in the drawing) fall on the two slits to create secondary sources 

S1 and S2. Spherical waves radiating out from the two secondary sources 

S1 and S2 maintain a fixed phase relationship with each other as they 

spread out and overlap on the screen, to produce a series of alternate 

bright and dark regions, as we saw in Figure 1-7. The alternate regions of 

bright and dark are referred to as  nterference fringes. Figure 1-8b shows 

such interference fringes, greatly expanded, for a small central portion of 

the screen shown in Figure 1-8a. 

 

 

 

FIGURE (1-8) 

 

1. Detailed analysis of interference from a double slit: With the help of 

the principle of superposition, we can calculate the positions of the 

alternate maxima (bright regions) and minima (dark regions) shown in 

Figure 1-8. To do this we shall make use of Figure 1-9 and the following 

conditions: 



 

 

(a) Light from slits S1 and S2 is coherent; that is, there exists a fixed 

phase relationship between the waves from the two sources. 

(b) Light from slits S1 and S2 is of the same wavelength  

 

Figure (1-9) 

screen. If the overlapping waves are in phase, we expect a bright spot at 

P; if they are out of phase, we expect a dark spot. So the phase difference 

between the two waves arriving at point P is a key factor in determining 

what happens there. We shall express the phase difference in terms of the 

path difference, which we can relate to the wavelength λ. For clarity, 

Figure 1-9 is not drawn to scale. It will be helpful in viewing the drawing 

to know that, in practice, the distance s from the slits to the screen is 

about one meter, the distance a between slits is less than a millimeter, so 

that the angle θ in triangle S1S2Q, or triangle OPO′, is quite small. And 

on top of all this, the wavelength of light is a fraction of a micrometer. 

The path difference Δ between S1P and S2P, as seen in Figure 1-9, is 

given by Equation 1-4, since the distances PS1 and PQ are equal and 

since sin θ = Δ/a in triangle S1S2Q. equation (1-4) 

 



 

 

If the path difference Δ is equal to λ or some integral multiple of λ, the 

two waves arrive at P in phase and a bright fringe appears there 

(constructive interference). The condition for bright (B) fringes is, then 

equation (1-5) 

 

The number m is called the order number. The central bright fringe at θ = 

0 (point 0′ on the screen) is called the zeroth-order maximum (m = 0). 

The first maximum on either side, for    which m = ±1, is called the first-

order maximum, and so on. If, on the other hand, the path difference at P 

is an odd multiple of λ/2, the two waves arrive out of phase and create a 

dark fringe (destructive interference). The condition for dark (D) fringes 

is given by Equation 1-6. 

 

Since the angle θ exists in both triangles S1S2Q and OPO′, we can find an 

expression for the positions of the bright and dark fringes along the 

screen. Because θ is small, as mentioned above, we know that sin θ ≅ tan 

θ, so that for triangle OPO′ we can write, equation 1-7 

 

Combining Equation 1-7 with Equations 1-5 and 1-6 in turn, by 

substituting for sin θ in each, we obtain expressions for the position y of 

bright and dark fringes on the screen, equation 1-8 and 1-9 

 

 



 

 

 

In Example 2, through the use of Equation 1-8, we recreate the method 

used by Thomas Young to make the first measurement of the wavelength 

of light. 

Example 2 

A double-slit source with slit separation 0.2 mm is located 1.2 m from a 

screen. The distance between successive bright fringes on the screen is 

measured to be 3.30 mm. What is the wavelength of the light? 

 

Solution: Using Equation 4-8 for any two adjacent bright fringes, we can 

obtain an equation for Δy, the fringe separation. Thus, 

 

2. Intensity variation in the interference pattern. Knowing how to 

locate the positions for the fringes on a screen, we might now ask, “How 

does the brightness (intensity) of the fringes vary as we move, in either 

direction, from the central bright fringe (m = 0)?” We obtain a 

satisfactory answer to this question by representing the two separate 

electric fields at point P, the one coming from S1 as E1 = E0 sin 2πft and 

the one from S2 as E2 = E0 sin (2πft + δ). The waves are assumed to have 

the same amplitude E0. Here δ is the phase angle difference between 

the two waves arriving at P. The path difference Δ is related to the phase  

angle δ by the, equation 1-10 

 



 

 

so that if Δ = λ, δ = 2π rad = 360°, if Δ = λ/2, δ = π rad = 180°, and so on. 

Then, by using the principle of superposition, we can add the two electric 

fields at point P to obtain ERES = E1 + E2. (Carrying out this step 

involves some trigonometry, the details of which can be found in most 

optics texts.) Since the intensity I of the light goes as the square of the 

electric field E, we square ERES and average the result over one cycle of 

wave oscillation at P, obtaining, finally, an expression for the average 

intensity, IAV. Equation 1-11 

 

Here δ is the critical phase angle difference at point P. For all points P for 

which δ = 0, 2π, 4π, and so on, corresponding to Δ = 0, λ, 2λ, etc., cos2 δ/  

etc., cos2 δ 

 

 

 

The maximum intensity I0 is equal to (E0 + E0)2 or 4E0 2, since each 

wave has amplitude E0.  Further, from Equations 1-10 and 1-4, we see 

that , equation 1-12 

 

so that the phase angle δ is connected clearly through the angle θ to 

different points P on the screen. Going one step further, replacing sin θ 

by y s in Equation 1-12, we have the connection    between δ and any 

position y on the screen, such that, equation 1-13. 

 



 

 

With Equation 4-13 and I0 = 4 E0 2, we can rewrite Equation 1-11 in a 

form that relates IAV directly to a position y on the screen. Equation 1-14 

 

 

 

C. Thin-film interference 

Interference effects provide us with the rainbow of colors we often see on 

thin-film soap bubbles and “oil slicks.” Each is an example of the 

interference of white light reflecting from opposite surfaces of the thin 

film. When thin films of different refractive indexes and  thicknesses are 

judiciously stacked, coatings can be created that either enhance reflection 

greatly (HR coats) or suppress reflection (AR coats). A basic appreciation 

of these phenomena begins with an understanding of interference in a 

single thin film. 

 

1. Single-film interference. The geometry for thin-film interference is 

shown in Figure 1-10. We assume that the light strikes the film—of 

thickness t and refractive index nf —at near perpendicular incidence. In 

addition we take into account the following established facts: 

• A light wave traveling from a medium of lower refractive index to a 

medium of higher refractive index automatically undergoes a phase 

change of π (180°) upon reflection. A light wave traveling from a 



 

 

medium of higher index to one of lower index undergoes no phase 

change upon reflection. (We state this without proof.) 

• The wavelength of light λn in a medium of refractive index n is given 

by λn = λ0/n, where λ0 is the wavelength in a vacuum or, approximately,  

 

Figure 1-10 

In Figure 1-10, we show a light beam in medium of index n0 incident on 

the transparent film of index nf. The film itself rests on a substrate of 

index ns. Generally, the initial medium is air, so that n0 = 1. The beam 

incident on the film surface at A divides into reflected and refracted 

portions. The refracted beam reflects again at the film-substrate interface 

at B and leaves the film at C, in the same direction as the beam reflected 

at A. Part of the beam may reflect internally again at C and continue to 

experience multiple reflections within the film layer until it has lost its 

intensity. There will thus exist multiple parallel beams emerging from the 

top surface, although with rapidly diminishing amplitudes. 

 

Unless the reflectance of the film is large, a good approximation to the 

more complex situation of multiple reflection is to consider only the first 

two emerging beams. The two parallel beams leaving the film at A and C 

can be brought together by a converging lens, the eye, for example. The 

two beams intersecting at P overlap and interfere. Since the two beams 

travel different paths from point A onward, one in air, the other partly in 



 

 

the film, a relative phase difference develops that can produce 

constructive or destructive interference at P. The optical path difference 

Δ—in the case of normal incidence—is the additional path length ABC 

traveled by the refracted ray. The optical path difference in the film is 

equal to the product of the geometrical path difference (AB + BC) times 

the refractive index of the film. If the incident ray is nearly perpendicular 

to the surface, the path difference (AB +BC) is approximately equal to 

twice the film thickness 2t. Then, equation 1-15 

 

 

where t is the film thickness. For example, if 2nt = λ0, the wavelength of 

the light in air, the two interfering beams—on the basis of optical path 

difference alone—would be in phase and produce constructive 

interference. However, an additional phase difference, due to the 

phenomenon mentioned above—phase change on reflection—must be 

considered. Suppose that nf > n0 and nf > ns. Often, in practice, n0 = ns,  

ecause the two media bounding the film are identical, as in the case of a 

water film  (soap bubble) in air. Then the reflection at A occurs with light 

going from a lower index n0 (air) toward the higher index nf (film). The 

reflection at B, on the other hand, occurs for light going from a higher 

index nf (film) toward a lower index ns (air). Thus, the light reflecting at 

A shifts phase by 180° (equivalent to one-half wavelength) while the light 

reflecting at B does not. As a result, if 2nt = λ0 and we add to this the 

additional λ0/2 phase shift for the beam reflecting at A, we have a total 

optical path difference of (λ0 + λ0/2), leading to destructive—rather than 

constructive—interference. So, in addition to the phase change introduced 

by path differences, we must always consider the possible phase change 

upon reflection at the interfaces. 



 

 

If we denote Δp as the optical path difference due to the film and Δr as 

the equivalent path difference introduced upon reflection, the condition 

for constructive interference becomes equation 1-16 

 

 

where m equals the order of interference. 

For a thin film of thickness t and refractive index nf, located in air, Δp = 

2nf t (according to Equation 1-15), and Δr = λ0/2. Thus, Equation 1-17—

for constructive interference—becomes 

 

where λ0 is the wavelength in air. For destructive interference, Equation  

 1-18 changes slightly to 

 

Let’s apply these ideas to the results of interference seen in soap-bubble 

films. 

 

 

 

 

 

 



 

 

3- DIFFRACTION 
The ability of light to bend around corners, a consequence of the wave nature 

of light, is fundamental to both interference and diffraction. Diffraction is simply any 

deviation from geometrical optics resulting from the obstruction of a wave front of 

light by some obstacle or some opening. Diffraction occurs when light waves pass 

through small openings, around obstacles, or by sharp edges. 

Several common diffraction patterns—as sketched by an artist—are shown in Figure 

(1-11). Figure 1-11a is a typical diffraction pattern for HeNe laser light passing 

through a circular pinhole. Figure 1-11b is a typical diffraction pattern for HeNe laser 

light passing through a narrow (vertical) slit. And Figure 1-11c is a typical pattern for 

diffraction by a sharp edge. 

 

 

Figure (1.11 ) Sketches of several common diffraction patterns 

 

The intricacy of the patterns should convince us—once and for all—that geometrical 

ray optics is incapable of dealing with diffraction phenomena. To demonstrate how 

wave theory does account for such patterns, we now examine the phenomenon of 

diffraction of waves by a single slit. 

 

 Diffraction by a single slit 

The overall geometry for diffraction by a single slit is shown in Figure 1-12. 

The slit opening, seen in cross section, is in fact a long, narrow slit, perpendicular to 

the page. The shaded “humps” shown along the screen give a rough idea of intensity 

variation in the pattern, and the sketch of bright and dark regions to the right of the 

screen simulates the actual fringe pattern seen on the screen. We observe a wide 



 

 

central bright fringe, bordered by narrower regions of dark and bright. The angle θ 

shown connects a point P on the screen to the center of the slit. 

 

Figure (1.12) Diffraction pattern from a single slit 

Since plane waves are incident on the screen, the diffraction pattern—in the absence 

of the focusing lens—would be formed far away from the slit and be much more 

spread out than that shown in Figure 1-13. The lens serves to focus the light passing 

through the slit onto the screen, just a focal length f away from the lens, while 

preserving faithfully the relative details of the diffraction pattern that would be 

formed on a distant screen without the lens. 

To determine the location of the minima and maxima on the screen, we divide the slit 

opening through which a plane wave is passing into many point sources (Huygens’ 

sources), as shown by the series of tiny dots in the slit opening of Figure 1-12. These 

numerous point sources send out Huygens’ spherical waves, all in phase, toward the 

screen. There, at a point such as P, light waves from the various Huygens’ sources 

overlap and interfere, forming the variation in light intensity shown in Figure 1-12. 

Thus, diffraction considers the contribution from every part of the wave front passing 

through the aperture. By contrast, when we looked at interference from Young’s 

double slit, we considered each slit as a point source, ignoring details of the portions 

of the wave fronts in the slit openings themselves. The mathematical details involved 

in adding the contributions at point P from each of the Huygens’ sources can be found 

in basic texts on physical optics. Here we give only the end result of the calculation. 

Equation locates the minima, ymin, on the screen, in terms of the slit width b, slit-to-

screen distance L, wavelength λ, and order m. equation (1-18) 

 



 

 

 

Figure 1-13 shows the positions of several orders of minima and the essential 

parameters associated with the single-slit diffraction pattern. (The positions of the 

maxima are mathematically more complicated to express, so we typically work with 

the positions of the well-defined minima.) 

 

Figure (1.13) Positions of adjacent minima in the diffraction patterns 

 

Example 1 

Coherent laser light of wavelength 633 nm is incident on a single slit of width 0.25 

mm. The observation screen is 2.0 m from the slit. (a) What is the width of the central 

bright fringe? (b) What is the width of the bright fringe between the 5th and 6th 

minima? 

Solution: 

(a) The width of the central bright fringe is 2y1, where y1 is the distance to the first 

minimum (m = 1) on either side. Thus, using Equation 1-18, 

 



 

 

 

 

Example 2 

Monochromatic light is incident on a single slit of width 0.30 mm. On a screen 

located 2.0 m away, the width of the central bright fringe is measured and found to be 

near 7.8 mm. What is the wavelength of the incident light? 

Solution: Since the width of the central bright fringe is 7.8 mm, equal to 2y1, we see 

that 

y1 = 3.9 mm. Then, rearranging Equation of λ, we have  , where 

 

 

 

Fraunhofer and Fresnel diffraction 

In general, if the observation screen is far removed from the slit on which 

plane waves fall (as in Figure 1-13) or a lens is used to focus the collimated light 

passing through the slit onto the screen (as in Figure 1-12), the diffraction occurring is 

described as Fraunhofer diffraction, after Joseph von Fraunhofer (1787-1826), who 

first investigated and explained this type of so-called far-field diffraction. If however, 

no lens is used and the observation screen is near to the slit, for either incident plane 

or spherical waves, the diffraction is called Fresnel diffraction, after Augustin Fresnel 

(1788-1829), who explained this type of near-field diffraction. The mathematical 

calculations required to determine the details of a diffraction pattern and account for 



 

 

the variations in intensity on the pattern are considerably more complicated for 

Fresnel diffraction than for Fraunhofer diffraction, so typically one studies first the 

Fraunhofer diffraction patterns, as we have. Without going into the details of how to 

distinguish mathematically between Fresnel and Fraunhofer diffraction we can give 

results that help you decide whether the diffraction pattern formed is Fraunhofer or 

Fresnel in origin. Knowing this distinction helps you choose which equations to use in 

describing a particular diffraction pattern arising from a particular optical setup. 

 

1-Criteria for far-field and near-field diffraction. Figure 1-14 shows the essential 

features of a general diffraction geometry, involving a source of light of wavelength 

λ, an opening to “obstruct” the light, and a screen to form the diffraction pattern. 

 

 

 

Figure (1.14) General diffraction geometry involving source, aperture, and screen 

 

The distance from source to aperture is denoted as Z and that from aperture to screen 

as Z′. Calculations based on geometries that give rise to Fraunhofer and Fresnel 

diffraction patterns verify the following: 

• If the distance Z from source to aperture and the distance Z′ from aperture to screen 

are both greater than the ratio aperture area λ by a factor of 100 or so, the diffraction 

pattern on the screen is characteristic of Fraunhofer diffraction—and the screen is said 

to be in the far field. For this situation, all Fraunhofer-derived equations apply to the 

details of the diffraction pattern. 

• If either distance—Z or Z′—is of the order of, or less than, the ratio aperture area λ 

, the diffraction pattern on the screen is characteristic of Fresnel diffraction and is said 

to be in the near field. For this situation, all Fresnel-derived equations apply to the 

details of the diffraction pattern. 



 

 

• Equation 4-22 indicates the “rule-of-thumb” conditions to be satisfied for both Z and 

Z′ for Fraunhofer diffraction. 

 

 

 

 

Figure 1-16 illustrates these conditions and shows the locations of the near field, far 

field, and a gray area in between. If the screen is in the gray area and accuracy is 

important, a Fresnel analysis is usually applied. If the screen is in the gray area and 

approximate results are acceptable, a Fraunhofer analysis (significantly simpler than a 

Fresnel analysis) can be applied. 

 

Figure (1.15) Defining near-field and far-field regions for diffraction 

 

Figure 1-16 shows how we can satisfy the conditions for Fraunhofer diffraction, as 

spelled out in Equation 4-22, through the use of focusing lenses on both sides of the 

aperture (Figure 1-16a)—or with a laser illuminating the aperture and a focusing lens 

located on the screen side of the aperture (Figure 1-16b). Either optical arrangement 

has plane waves approaching and leaving the aperture, guaranteeing that the 

diffraction patterns formed are truly Fraunhofer in nature. 

 

 



 

 

 

Figure (1.16) Optical arrangements for Fraunhofer diffraction 

 

Example 3 

Minati, a photonics technician, has been asked to produce a Fraunhofer diffraction 

pattern formed when light from a HeNe laser (λ = 633 nm) passes through a pinhole 

of 150-μm diameter. In order to set up the correct geometry for Fraunhofer 

diffraction, Minati needs to know (a) the distance Z from the laser to the pinhole and 

(b) the distance Z′ from the pinhole to the screen. 

Solution: Minati needs first to test the conditions given in Equation to calculates the 

ratio of aperture area λ assuming the pinhole to be circular. 

 

 

(a) Minati knows that light from the HeNe laser is fairly well collimated, so that 

nearly plane waves are incident on the pinhole, as illustrated in Figure 1-16b. She 

knows that plane waves are those that come—or appear to come—from very distant 

sources. So she concludes that, with the laser, the distance Z is much greater than 100 

(0.0279 m)—that is, greater than about 2.8 m—and so the “Z-condition” for 

Fraunhofer diffraction is automatically satisfied. 

(b) From her calculation of the ratio aperture area λ she knows also that the distance 

Z′ must be greater than 2.8 m. So she can place the screen 3 meters or so from the 

aperture and form a Fraunhofer diffraction pattern—OR she can place a positive lens 

just beyond the aperture—as in Figure 1-16b—and focus the diffracting light on a 

screen a focal length away. With the focusing lens in place she obtains a much 



 

 

reduced—but valid—Fraunhofer diffraction pattern located nearer the aperture. She 

chooses to use the latter setup, with a positive lens of focal length 10 cm, enable to 

arrange the laser, pinhole, and screen, all on a convenient 2-meter optical bench. 

 

2. Several typical Fraunhofer diffraction patterns. In successive order, we show 

the farfield diffraction pattern for a single slit (Figure 1-17), a circular aperture 

(Figure 1-18), and a rectangular aperture (Figure 1-19). Equations that describe the 

locations of the bright and dark fringes in the patterns accompany each figure. 

 

Figure (1-17) single slit 

 

Figure (1-18) circular aperture 

 



 

 

 

Figure (1-19) rectangular aperture 

 

Diffraction Grating 

If we prepare an aperture with thousands of adjacent slits, we have a so-called 

transmission diffraction grating. The width of a single slit—the opening—is given by 

d, and the distance between slit centers is given by L (see Figure 1-20). For clarity, 

only a few of the thousands of slits normally present in a grating are shown. Note that 

the spreading of light occurs always in a direction perpendicular to the direction of the 

long edge of the slit opening—that is, since the long edge of the slit opening is 

vertical in Figure 1-20, the spreading is in the horizontal direction—along the screen. 

 

 

Figure (1.20) Diffraction of light through a grating under Fraunhofer conditions 

 



 

 

The resulting diffraction pattern is a series of sharply defined, widely spaced fringes, 

as shown. The central fringe, on the symmetry axis, is called the zeroth-order fringe. 

The successive fringes on either side are called lst order, 2nd order, etc., respectively. 

They are numbered according to their positions relative to the central fringe, as 

denoted by the letter p. The intensity pattern on the screen is a superposition of the 

diffraction effects from each slit as well as the interference effects of the light from all 

the adjacent slits. The combined effect is to cause overall cancellation of light over 

most of the screen with marked enhancement over only limited regions, as shown in 

Figure 1-20. The location of the bright fringes is given by the following expression, 

called the grating equation, assuming that Fraunhofer conditions hold. 

 

 

If, for example, you shine a HeNe laser beam perpendicularly onto the surface of a 

transmission grating, you will see a series of brilliant red dots, spread out as shown in 

Figure 1-20. A complete calculation would show that less light falls on each 

successively distant red dot or fringe, the p = 0 or central fringe being always the 

brightest. Nevertheless, the location of each bright spot, or fringe, is given accurately 

by Equation 1-29 for either normal incidence (α = 0) or oblique incidence (α ≠ 0). If 

light containing a mixture of wavelengths (white light, for example) is directed onto 

the transmission grating, Equation 1-29 holds for each component color or 

wavelength. So each color will be spread out on the screen according to Equation 1-

29, with the longer wavelengths (red) spreading out farther than the shorter 

wavelengths (blue). In any case, the central fringe (p = 0) always remains the same 

color as the incident beam, since all wavelengths in the p = 0 fringe have θp = 0, 

hence all overlap to re-form the “original” beam and therefore the original “color.” 



 

 

Example 4 shows calculations for a typical diffraction grating under Fraunhofer 

conditions. 

Example 4 

Michael has been handed a transmission grating by his supervisor who wants 

to know how widely the red light and blue light fringes—in second order—are 

separated on a screen one meter from the grating. Michael is told that the separation 

distance between the red and blue colors is a critical piece of information needed for 

an experiment with a grating spectrometer. The transmission grating is to be 

illuminated at normal incidence with red light at λ = 632.8 nm and blue light at λ = 

420.0 nm. Printed on the frame surrounding the ruled grating, Michael sees that there 

are 5000 slits (lines) per centimeter on this grating. Michael decides he must, in turn: 

(a) Determine the distance L between the slit centers. 

(b) Determine the angular deviation θp in 2nd order for both the red and the blue light. 

(c) Determine the separation distance on the screen between the red and blue fringes. 

Solution: 

a-Since there are 5000 slits or grooves per centimeter, Michael knows that the 

distance � betweenthe slits, center to center, must be 

 

 (b) At normal incidence (α = 0), Equation 4-29 reduces to Equation 1-30, so, for 2nd 

order (p = 2), Michael writes the following two equations and solves them for the 

deviation angles θ2 red and θ2blue: 

 

 

 

 (c) From the geometry shown in Figure 4-22, Michael sees that the screen distances 

y2 red and y2 blueto the red and blue fringes in 2nd order respectively, and the 

grating-to-screen distance Z′ are related to deviation angles by the equation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

4- POLARIZATION 

We continue our discussion of the main concepts in physical optics with a 

brief look at polarization. Before we describe the polarization of light 

waves, let’s take a look at a simplistic—but helpful—analogy of 

“polarization” with rope waves. 

A. Polarization—a simple analogy 

Imagine a “magic” rope that you can whip up and down at one end, 

thereby sending a transverse “whipped pulse” (vibration) out along the 

rope. See Figure 4-24a. Imagine further that you can change the direction 

of the “whipped shape,” quickly and randomly at your end, so that a 

person looking back along the rope toward you, sees the “vibration” 

occurring in all directions—up and down, left to right, northeast to 

southwest, and so on, as shown in Figure 4-24b. 

 

 
Figure 4-24 Rope waves and polarization 

 

In Figure 4-24a, the rope wave is linearly polarized, that is, the rope 

vibrates in only one transverse direction—vertically in the sketch shown. 

In Figure 4-24b, the rope vibrations are in all transverse directions, so that 

the rope waves are said to be unpolarized. Now imagine that the waves 

on the rope—representing all possible directions of vibration as shown in 

Figure 4-24b—are passed through a picket fence. Since the vertical slots 

of the fence pass only vertical vibrations, the many randomly oriented 

transverse vibrations incident on the picket fence emerge as only vertical 



 

 

vibrations, as depicted in Figure 4-25. In this example of transverse 

waves moving out along a rope, we see how we can—with the help of a 

polarizing device, the picket fence in this case—change unpolarized rope 

waves into polarized rope waves. 

 

 
Figure 4-25 Polarization of rope waves by a picket fence 

 

 

B. Polarization of light waves 

The polarization of light waves refers to the transverse direction of 

vibration of the electric field vector of electromagnetic waves. (Refer 

back to Figure 4-3.) As described earlier, transverse means E-field 

vibrations perpendicular to the direction of wave propagation. If the 

electric field vector remains in a given direction in the transverse x-y 

plane—as shown in Figure 4-26—the light is said to be linearly 

polarized. (The “vibration” of the electric field referred to here is not the 

same as a physical displacement or movement in a rope. Rather, the 

vibration here refers to an increase and decrease of the electric field 

strength occurring in a particular transverse direction—at all given points 

along the propagation of the wave.) Figure 4-26 shows linearly polarized 

light propagating along the z-direction toward an observer at the left. The 

electric field E increases and decreases in strength, reversing itself as 

shown, always along a direction making an angle θ with the y-axis in the 

transverse plane. The E-field components Ex = E sin θ and Ey = E cos θ 

are shown also in the figure. 



 

 

 
Figure 4-26 Linearly polarized light with transverse electric field E propagating along the 

z-axis 

 

Table 1 lists the symbols used generally to indicate unpolarized light (E-

vector vibrating randomly in all directions), vertically polarized light (E-

vector vibrating in the vertical direction only), and horizontally polarized 

light (E-vector vibrating in the horizontal direction only). With reference 

to Figure 4-26, the vertical direction is along the y-axis, the horizontal 

direction along the x-axis. 

 

 
Like the action of the picket fence described in Figure 4-25, a special 

optical filter—called either a polarizer or an analyzer depending on how 

it’s used—transmits only the light wave vibrations of the E-vector that 

are lined up with the filter’s transmission axis—like the slats in the picket 

fence. The combined action of a polarizer and an analyzer are shown in 

Figure 4-27. Unpolarized light, represented by the multiple arrows, is 



 

 

incident on a “polarizer” whose transmission axis (TA) is vertical. As a 

result, only vertically polarized light emerges from the polarizer. The 

vertically polarized light is then incident on an “analyzer” whose 

transmission axis is horizontal, at 90° to the direction of the vertically 

polarized light. As a result, no light is transmitted. 

 

 
Figure 4-27 Effect of polarizers on unpolarized light 

 

C. Law of Malus 

When unpolarized light passes through a polarizer, the light intensity—

proportional to the square of its electric field strength—is reduced, since 

only the E-field component along the transmission axis of the polarizer is 

passed. When linearly polarized light is directed through a polarizer and 

the direction of the E-field is at an angle θ to the transmission axis of the 

polarizer, the light intensity is likewise reduced. The reduction in 

intensity is expressed by the law of Malus, given in Equation 4-32. 

 

 
 



 

 

Application of the law of Malus is illustrated in Figure 4-28, where two 

polarizers are used to control the intensity of the transmitted light. The 

first polarizer changes the incident unpolarized light to linearly polarized 

light, represented by the vertical vector labeled E0. The second polarizer, 

whose TA is at an angle θ with E0, passes only the component E0 cos θ, 

that is, the part of E0 that lies along the direction of the transmission axis. 

Since the intensity goes as the square of the electric field, we see that I, 

the light intensity transmitted through polarizer 2, is equal to (E0 cos)2, or 

I = E02 cos2. Since E02 is equal to I0, we have demonstrated how the law 

of Malus (I = I0 cos2 θ) comes about. We can see that, by rotating 

polarizer 2 to change θ, we can vary the amount of light passed. Thus, if θ 

= 90° (TA of polarizer 1 is 90° to TA of polarizer 2) no light is passed, 

since cos 90° = 0. If θ = 0° (TA of polarizer 1 is parallel to TA of 

polarizer 2) all of the light is passed, since cos 0° = 1. For any other θ 

between 0° and 90°, an amount I0 cos2 θ is passed. 

 

 
Figure 4-28 Controlling light intensity with a pair of polarizers 

 

 

Example 11 

Unpolarized light is incident on a pair of polarizers as shown in Figure 4-

28. 



 

 

(a) Determine the angle θ required—between the transmission axes of 

polarizers 1 and 2—that will reduce the intensity of light I0 incident on 

polarizer 2 by 50%. 

(b) For this same reduction, determine by how much the field E0 incident 

on polarizer 2 has been reduced. 

Solution: 

a- Based on the statement of the problem, we see that I = 0.5 I0. By 

applying the law of Malus, we have: 

 

 

D. Polarization by reflection and Brewster’s angle 

Unpolarized light—the light we normally see around us—can be 

polarized through several methods. The polarizers and analyzers we have 

introduced above polarize by selective absorption. That is, we can 

prepare materials—called dichroic polarizers—that selectively absorb 

components of E-field vibrations along a given direction and largely 

transmit the components of the E-field vibration perpendicular to the 

absorption direction. The perpendicular (transmitting) direction defines 

the TA of the material. This phenomena of selective absorption is what E. 

H. Land discovered in 1938 when he produced such a material—and 

called it Polaroid. 

 



 

 

Polarization is produced also by the phenomenon of scattering. If light is 

incident on a collection of particles, as in a gas, the electrons in the 

particles absorb and reradiate the light. The light radiated in a direction 

perpendicular to the direction of propagation is partially polarized. For 

example, if you look into the north sky at dusk through a polarizer, the 

light being scattered toward the south—toward you—is partially 

polarized. You will see variations in the intensity of the light as you rotate 

the polarizer, confirming the state of partial polarization of the light 

coming toward you. 

Another method of producing polarized light is by reflection. Figure 4-29 

shows the complete polarization of the reflected light at a particular 

angle of incidence B, called the Brewster angle. 

 
Figure 4-29 Polarization by reflection at Brewster’s angle 

 

 

 

The refracted light on the other hand becomes only partially polarized. 

Note that the symbols introduced in Table 4-1 are used to keep track of 

the different components of polarization. One of these is the dot (•) which 

indicates E-field vibrations perpendicular to both the light ray and the 

plane of incidence, that is, in and out of the paper. The other is an arrow 

(↔) indicating E-field vibrations in the plane of incidence and 

perpendicular to the ray of light. The reflected E-field coming off at 

Brewster’s angle is totally polarized in a direction in and out of the paper, 



 

 

perpendicular to the reflected ray. This happens only at Brewster’s angle, 

that particular angle of incidence for which the angle between the 

reflected and refracted rays, B + β, is exactly 90°. At the angle of 

incidence B, the E-field component (↔) cannot exist, for if it did it would 

be along the reflected ray, violating the requirement that E-field 

vibrations must always be transverse—that is, perpendicular to the 

direction of propagation. Thus, only the E-field component perpendicular 

to the plane of incidence (•) is reflected. Referring to Figure 4-29 and 

Snell’s law at the Brewster angle of incidence, we can write: 

 
Equation 4-33 is an expression for Brewster’s law. Knowing n1 (the 

refractive index of the incident medium) and n2 (the refractive index of 

the refractive medium), we can calculate the Brewster angle B. Shining 

light on a reflecting surface at this angle ensures complete polarization of 

the reflected ray. We make use of Equation 4-33 in Example 12. 

Example 12 

In one instance, unpolarized light in air is to be reflected off a glass 

surface (n = 1.5). In another instance, internal unpolarized light in a glass 

prism is to be reflected at the glass-air interface, where n for the prism is 

also 1.5. Determine the Brewster angle for each instance. 

Solution: 

(a) Light going from air to glass. In this case, n1 = 1 and n2 = 1.5. 



 

 

 
 

 

 
 

 
 

 


